https://www.halvorsen.blog

Optimization with MATLAB

Optimization

Optimization is based on finding the minimum of a given criteria function.

Optimization

- Optimization is important in modelling, control and simulation applications.
- Optimization is based on finding the minimum of a given criteria function.
- It is typically used with Model based Control (MPC)
- MATLAB functions:
- fminbnd() - Find minimum of single-variable function on fixed interval
- fminsearch() - this function is similar to fminbnd() except that it handles functions of many variables

Optimization

Example: $y(x)=2 x^{2}+20 x-22$
We want to find for what value of x the function has its minimum value:

```
clear
clc
x = -20:0.1:20;
y = 2.*x.^2 + 20.*x - 22;
plot(x,y)
grid
i=1;
while ( y(i) > y(i+1) )
    i = i + 1;
end
x(i)
y(i)
```


Example:

Optimization

$$
y(x)=2 x^{2}+20 x-22
$$

```
function f = mysimplefunc(x)
f = 2*x.^2 + 20.*x - 22;
```


-5

$$
y=
$$

$$
-72
$$

We got the same results as previous slide

```
clear
clc
close all
x = -20:1:20;
f = mysimplefunc(x);
plot(x, f)
grid
x_min = fminbnd(@mysimplefunc, -20, 20)
y = mysimplefunc(x_min)
```

Note! if we have more than 1 variable, we have to use e.g., the fminsearch () function

Optimization

Example: $y(x)=2 x^{2}+20 x-22$

The minimum of the function

We have that:
$\frac{d y}{d x}=4 x+20$
Minimum when:
$\frac{d y}{d x}=0$
This gives:
$4 x+20=0$
$x=-5$

Optimization

Given the following function:

$$
f(x)=x^{3}-4 x
$$

We will:

- Plot the function
- Find the minimum for this function
function $f=$ myefunction(x)

clear, clc
$\mathrm{x}=-3: 0.1: 3$;
f = mysimplefunc(x);
plot (x, f)
[xmin,fmin] = fminbnd(@myfunction, -3, 3)
This gives:

$$
\frac{d y}{d x}=3 x^{2}-4=0 \rightarrow x_{\min }=\sqrt{\frac{4}{3}} \approx 1.1547
$$

xmin =
1.1547
fmin =
-3.0792

Optimization - Rosenbrock's Banana Function

Given the following function:

Rosenbrock's banana function is a famous test case for optimization software

$$
f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}
$$

This function is known as Rosenbrock's banana function.

We will:
\rightarrow Plot the function
\rightarrow Find the minimum for this function

We plot the Banana function:

```
clear,clc
    [x,y] = meshgrid(-2:0.1:2, -1:0.1:3);
f = (1-x).^2 + 100.*(y-x.^2).^2;
figure(1)
surf(x,y,f)
figure(2)
mesh(x,y,f)
figure(3)
surfl(x,y,f)
shading interp;
colormap(hot);
```

$$
\begin{aligned}
& \text { function } f=\text { bananafunc }(x) \\
& f=(1-x(1)) \cdot{ }^{\wedge} 2+100 \cdot *(x(2)-x(1) \cdot \wedge 2) \cdot{ }^{\wedge} 2 ;
\end{aligned}
$$

```
[x,fval] = fminsearch(@bananafunc, [-1.2;1])
```


From MATLAB we get:

$$
\begin{aligned}
& x=1.0000 \quad 1.0000 \\
& \text { fval }=8.1777 \mathrm{e}-10
\end{aligned}
$$

Which is correct

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

