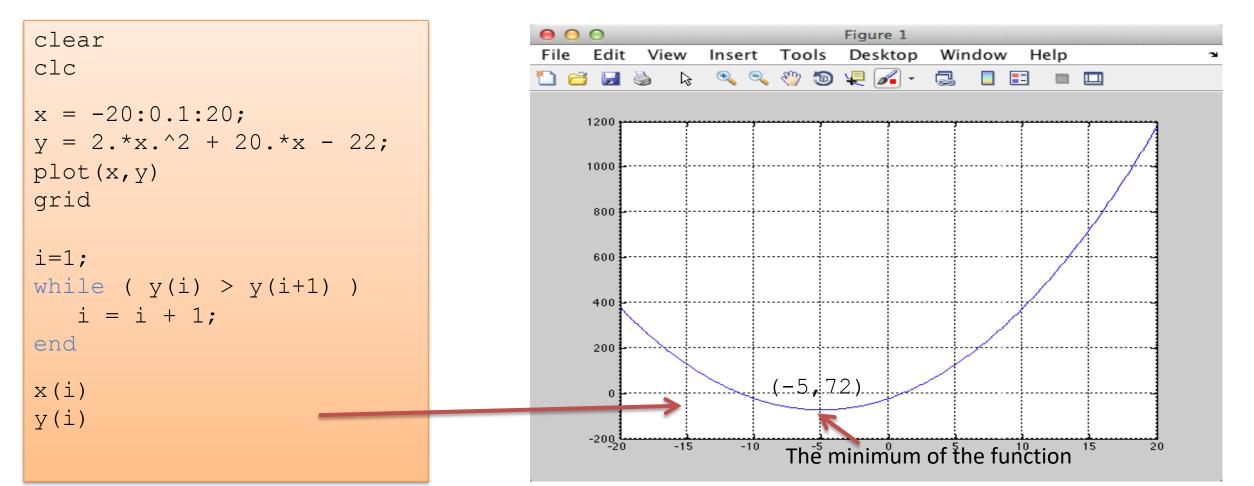

https://www.halvorsen.blog

Optimization with MATLAB

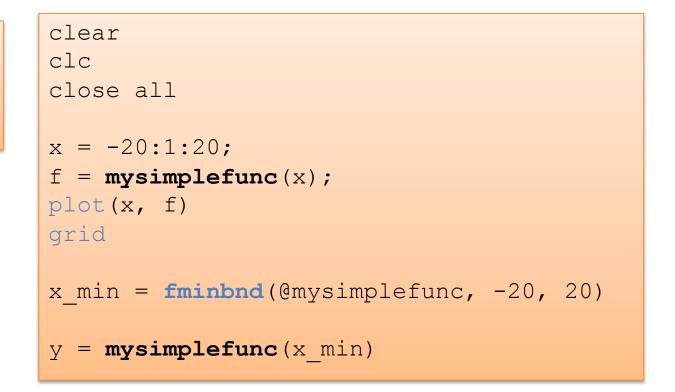
Hans-Petter Halvorsen


Optimization is based on finding the minimum of a given criteria function.

- Optimization is important in modelling, control and simulation applications.
- Optimization is based on finding the minimum of a given criteria function.
- It is typically used with Model based Control (MPC)
- MATLAB functions:
 - *fminbnd()* Find minimum of single-variable function on fixed interval
 - *fminsearch()* this function is similar to *fminbnd()* except that it handles functions of many variables

Example: $y(x) = 2x^2 + 20x - 22$

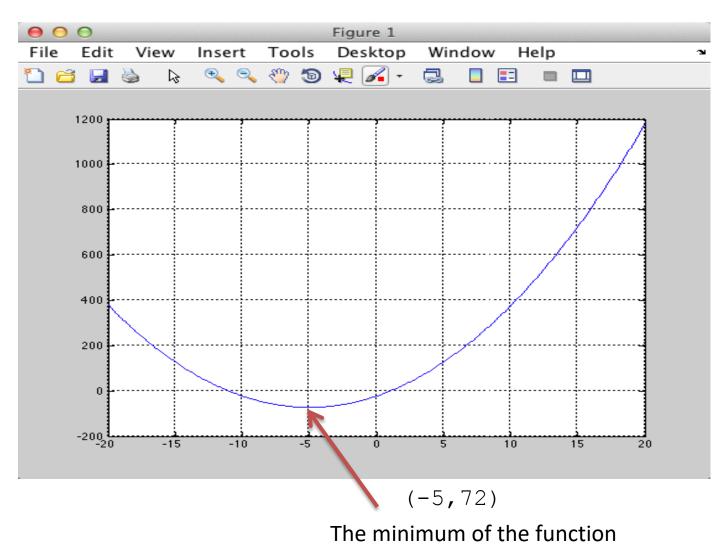
We want to find for what value of x the function has its minimum value:



Example:

Optimization

$$y(x) = 2x^2 + 20x - 22$$


<pre>function f = mysimplefunc(x)</pre>												
f = 2*x.^2 + 20.*x -22;												
x_min =												
-5												
y =												
-72												

Note! if we have more than 1 variable, we have to use e.g., the *fminsearch()* function

We got the same results as previous slide

Example: $y(x) = 2x^2 + 20x - 22$

We have that:

$$\frac{dy}{dx} = 4x + 20$$

Minimum when:

$$\frac{dy}{dx} = 0$$

This gives:

$$4x + 20 = 0$$

$$x = -5$$

Given the following function:

$$f(x) = x^3 - 4x$$

We will:

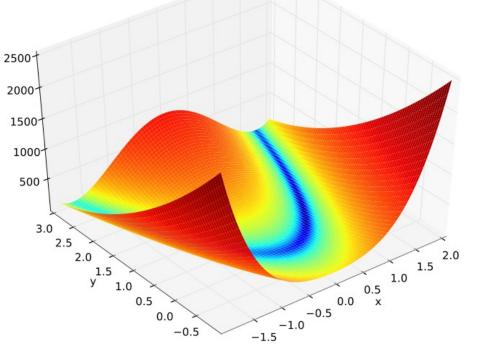
- Plot the function
- Find the minimum for this function

function f = myefunction (x)
f = x.^3 - 4*x;
clear, clc
x = -3:0.1:3;
f = mysimplefunc (x);
plot (x, f)

$$\frac{dy}{dx} = 3x^2 - 4 = 0 \rightarrow x_{min} = \sqrt{\frac{4}{3}} \approx 1.1547$$
This gives:
xmin =
-3.0792

Optimization - Rosenbrock's Banana Function

Given the following function:


Rosenbrock's banana function is a famous test case for optimization software

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

This function is known as Rosenbrock's banana function.

We will:

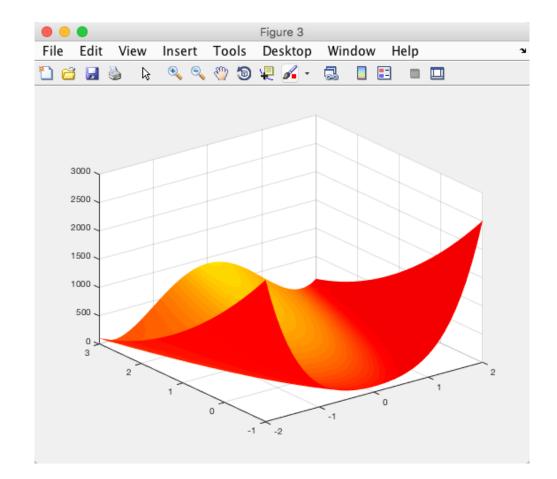
- \rightarrow Plot the function
- \rightarrow Find the minimum for this function

https://en.wikipedia.org/wiki/Rosenbrock_function

We plot the Banana function:

```
clear,clc
```

```
[x,y] = meshgrid(-2:0.1:2, -1:0.1:3);
```


```
f = (1-x).^2 + 100.*(y-x.^2).^2;
```

figure(1)

surf(x,y,f)

figure(2)
mesh(x,y,f)

```
figure(3)
surfl(x,y,f)
shading interp;
colormap(hot);
```


function f = bananafunc(x)

$$f = (1-x(1)) \cdot ^{2} + 100 \cdot (x(2) - x(1) \cdot ^{2}) \cdot ^{2};$$

[x,fval] = fminsearch(@bananafunc, [-1.2;1])

From MATLAB we get:

x = 1.0000 1.0000

fval = 8.1777e-10

Which is correct

•									Fig	ure 3	1								
File		Edit	Vi	ew	Inse	rt	Тос	ols	De	skto	р	Win	dow	Н	elp				ъ
<u> </u>	3		۵	\searrow	÷,	9	${\mathfrak Y}$	Э	ų	1	•	3		==					
											_								
	30	00 🗸											\vdash						
	25	00 🗸		_					-										
									-		1								
	20	00 🗸				-								\neg					
	15	00 🗸					_				-					\geq			
	10	00 🗸																	
	5	00 🗸		-															
		0 / 3															_		
			2	2				-	_						\geq	~	_	2	
					1		\geq	_				_		0		1			
							0	-1	\times	2		-1							
								- 1	-	2									

Hans-Petter Halvorsen

University of South-Eastern Norway www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

